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Abstract: Natural steppe grasslands are the principal food resource for sheep in the Patagonia 
region, reared for meat and wool. However, there is currently a concern about the relationship 
between ruminant livestock and climate change due to its contribution to anthropogenic greenhouse 
gas (GHG) emissions. The objective of this study was to determine the carbon footprints (CF) of 
sheep meat (lamb) and wool on a range of farms using empirical data collected on farm and then 
upscaled to the regional scale using models that use topographic, climatic, and vegetation indices 
as independent variables. At the regional level, the total CF of lamb and wool (the combination of 
emissions produced on farm, via transport, and via industrial processing) varied from 10.64 to 41.32 
kg CO2-eq/kg for lamb meat (carcass) and from 7.83 to 18.70 kg CO2-eq/kg for fine-grade wool. For 
both, the predominant contribution was from primary production on-farm (75–90%), followed by 
industrial processing (2–15%), and transportation. We used multiple regression models to produce 
maps of lamb and wool CF at farm gate across Santa Cruz province. The model for variation of lamb 
CF explained 95% of the variance on the data and the most significant predictor variables were 
temperature seasonality and normalized difference vegetation index (NDVI, dimensionless). The 
most important variables for the model of CF of greasy wool production at farm gate were 
isothermality, temperature seasonality, and NVDI explained 98%. The lowest CF values of both 
products (lamb and wool) were located in more productive grasslands. The successful management 
of livestock GHG emissions becomes an important challenge to the scientific, commercial, and 
policy communities. The results of CF for lamb and wool production found in the present work 
assist in characterizing the greenhouse gas emissions profile of livestock products in Southern 
Patagonia by providing a baseline against which mitigation actions can be planned and progress 
monitored. 

Keywords: anthropogenic greenhouse gas (GHG) emissions; rangeland; livestock; climate; lamb 
production; wool production 
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1. Introduction 

Natural grasslands occupy most of Santa Cruz Province (Southern Patagonia region), and are 
the principal food resource for sheep, reared for meat and wool. The steppe ecosystem, mainly 
characterized by the presence of tussock (Festuca, Stipa), short grasses (Poa, Carex), and shrubs, covers 
85% of the total area in Santa Cruz province [1]. Extensive livestock production systems in Southern 
Patagonia, based on low input level and natural areas, are dominant, with a marked seasonal grass 
production that is restricted to a 5–7-month growth period due to water stress and low winter 
temperatures. Main environmental factors that affect net primary production at regional level derive 
from the importance of mean annual precipitation, radiation, and temperature [2]. Continuous 
grazing with fixed stocking rates in large paddocks (1000 to 5000 ha) prevails over grazing systems 
subjected to regular grassland condition evaluations and rotational rests [3].  

The importance of livestock in providing societies with food, income, employment, and 
nutrients is widely recognized. However, there is currently a concern about the relationship between 
livestock and climate change, highlighted in the Food and Agriculture Organization of the United 
Nations (FAO) report ‘‘Livestock’s long Shadow’’, that claims that domestic animal production 
contributes 18% of anthropogenic greenhouse gas (GHG) emissions [4]. It has been reported that 
grazing intensely on extensively managed grasslands affects ecosystem C levels. Grassland 
management can determine whether extensive livestock systems could be a net sink or a source of 
GHGs, where steppe degradation through inappropriately implemented livestock grazing 
(overgrazing) systems can lead to a net release of GHGs, predominantly in the form of CO2 from 
depleting soil organic carbon stocks [5,6]. About 50 Mg C/ha has been observed at sites with heavy 
stocking rate compared to 130 Mg C/ha under low grazing intensity [7].  

To fully evaluate the positive and negative effects of mitigation strategies on greenhouse gas 
emissions in production chains, consequential life cycle assessments (LCA) or scenario models have 
been used to account for all the GHGs emitted from all stages of sheep production [8,9]). From this, 
the final summary of the GHGs (expressed as carbon dioxide equivalents, CO2-eq) emitted during 
the production of a given product is termed its carbon footprint (CF), and there is an increasing 
interest in attributing global warming potential to various products via carbon footprints to give 
producers and consumers insight into their contribution to global warming. Advancement of the 
livestock production policies will require improvement in the production stream and marketing of 
wool and mutton as “specialty”. In this regard, the carbon footprint promises to become a 
determining factor for transactions of sheep products between countries. CFs can also provide an 
emissions benchmark against which mitigation targets can be set and progress measured, and enable 
carbon labeling of food products to inform sustainable consumer purchasing decisions [10,11]. 
Available evidence indicates that CF labeling in agriculture is an emerging reality, and many 
consumers evaluated through surveys in the United States and the European Union (approximately 
65%) were willing to consider a product’s CF when making their purchasing decisions [12]. Given 
these trends, the need for assessment of the CF within the main export-oriented meat and wool 
industry in the province of Santa Cruz is clear. Such efforts will help the region maintain open access 
to environmental-minded markets and shift marketing of the region’s wool and mutton as a specialty 
product. There are no antecedents in the scientific literature on the CF of sheep production in 
Patagonia. 

The main objective of the present work is to answer the question: What are the CFs of sheep 
meat and wool on a range of farms using empirical data collected from sheep farms across Santa Cruz 
province? Also, here we upscale data of CF for lamb and wool production at farm gate and also 
include transport and further processing at the regional scale using multiple regression that uses 
topographic, climatic, and vegetation indices as independent variables. We hypothesize that at farm 
level CF is more sensitive to the effects of grasslands condition due to grazing (stocking rates) than 
the other potential explanatory variables, such as transportation distances and emissions resulting 
from industrial processing. At regional level, CF would be lowest where the physical environmental 
conditions (moisture, temperature, topography) promote grasslands production. 
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2. Material and Methods 

2.1. Definition of Sheep Farming Systems 

For this study, 63 sheep farms across Santa Cruz province (Figure 1) were selected and integrated 
into a geographical information system (GIS) using ArcMap 10.0 software [13]. Sheep farms were 
randomly sampled within the categories of grassland in good ecological condition and overgrazed 
(determined from grasslands evaluation in each farm) in five ecosystem categories (Mata Negra 
Shrubland, Dry Magellanic Steppe, Humid Magellanic Steppe, Central Plateau Grasslands, and 
Andean Grasslands). In these ecosystems, the annual net primary production (ANPP) varied from 
4.9 g/m2/yr for overgrazed grassland in the Mata Negra thicket to 59.1 g/m2/yr under moderate 
grazing in Andean grasslands. Overgrazing reduced ANPP by two-thirds in most ecosystems. 

In the region, a significant climate gradient exists, since the Andes Mountains act as an 
orographic barrier; annual rainfall ranges from 800 to 1000 mm/year in the Andes Mountains and 
decreases to 200 mm/year in the eastern part of Santa Cruz Province. The ratio of mean annual 
precipitation to potential evapotranspiration ratio of the steppes fluctuates between 0.45 and 0.11, 
with marked deficits in spring and summer. The variations in local topographic and edaphic 
characteristics combined with a significant precipitation gradient substantially influence the 
distribution patterns of vegetation throughout the region. Santa Cruz province, a cold temperate 
region, possesses mean annual temperatures between 5.5 and 8.0 °C. Temperatures are highest 
during the short Patagonian summers between the months of December and February. The summer 
days are long due to the region’s southern latitude. The windiest season within the region occurs 
between November and March, producing frequent and severe south-southwesterly wind storms 
reaching over 100 km/h. In Table 1 the mean values of climate and ecosystem variables for each 
ecosystem category are summarized.  

 
Figure 1. Study area. (A) Location and provinces (light grey = South America, dark grey = Argentina, 
black = Santa Cruz, black triangles = meat and wool industries); (B) provincial farms cadastre (680 
productive sheep farms) and sample sites (black dots); (C) primary and secondary transport routes; 
(D) ecosystems (light grey = central plateau grasslands, middle grey = mata negra shrubland, grey = 
humid Magellanic steppe, dark grey = dry Magellanic steppe, black = Andean grasslands). 
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Table 1. Mean values of main climate and ecosystem variables for each ecosystem category in Santa 
Cruz province, Patagonia, Argentina. 

Ecological Area AMT  
(°C) 

AP  
(mm/yr) 

NDVI 
(dimensionless) 

ANPP  
(g C/m2/yr1) 

ELE  
(m.a.s.l.) 

Andean region 5.9 442 0.64 286 454 
Humid Magellanic steppe 5.4 354 0.54 271 337 

Dry Magellanic steppe 6.4 227 0.34 196 166 
Mata Negra thicket 6.6 162 0.22 120 299 

Central Plateau 8.4 192 0.17 111 315 
ATM = mean annual temperature, AP = mean annual precipitation, NDVI = normalized difference 
vegetation index, ANPP = annual net primary production, ELE = elevation (meters above sea level). 

The sheep farms evaluated in the present work are devoted to extensive sheep production, 
mostly the Corriedale breed. Throughout the year, the animals use different paddocks from May to 
September (mating and gestation), September to January (lambing and lactation), and January to May 
(from weaning to mating). Paddock changes are associated with specific activities, such as eye-
shearing (May), pre-lambing shearing (September), and marking (January). Paddocks situated above 
700 m above sea level are mostly used in summer, because they are covered with snow during the 
winter season. Lamb production implies a particular nutritional requirement curve, with higher 
demand before the start of winter to ensure both pregnancy (mating in May) and resistance to winter 
conditions until spring regrowth. The months before regrowth are critical because they coincide with 
the last two-month period of sheep gestation, when nutritional requirements increase considerably. 
The estimation of carrying capacity is based on the biomass production of short grasses and forbs 
that grow in the space among tussocks of each ecosystem and the requirements of 530 kg DM/yr for 
one Corriedale ewe of 49 kg of live weight, which represents a Patagonian sheep unit equivalent 
(PSUE) [14]. The farm and flock structure, the inputs and outputs of the productive system, and the 
productivity indicators are presented in Table 2. 

Table 2. Farm and flock structure, inputs and outputs of the productive system evaluated in Southern 
Patagonia for carbon footprint calculations. 

Farm and Flock Structure Mean Range 
Farm area (ha) 24,760 20,000–30,000 
Breeding ewe flock size (head/farm) 8500 5000–22,500 
Stocking rate (PSUE/ha/yr) 0.35 0.20–0.75 
Inputs   
Fuel diesel for electricity, tractor, and transportation (l/yr) 15,000 5800–16,000 
Gas in tubes (kg/yr) 2700 1600–4900 
Firewood and coal for heating (t/yr) 37 21–64 
Outputs   
Average live weight of lambs sold (kg) 22.5 20–25 
Greasy wool (kg/animal) 4.7 4.2–5.0 
Productivity indicators   
Lambing (%) 78 70–90 
Lamb growth rate from birth to finishing after 100 days (g/day) 185 170–200 
Breeding ewe replacement rate (%) 27 25–30 

2.2. Footprint Calculation at Farm Level 

Empirical farm data were used to estimate the GHG emissions associated with sheep production 
on farms in Southern Patagonia. Farmers and rural extensionists provided information on important 
aspects of the production system, including inputs, animal stock movements, outputs (including 
number and weight of sheep sold), and farm characteristics. 
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In the present work, the CF included emissions of the three most important GHGs emitted from 
agricultural activities: carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4), encompassing 
both direct and indirect emissions. Direct emissions are those that occur on-farm, directly from 
mobile combustion and stationary combustion, and directly from fugitive emissions. Indirect 
emissions are comprised of emissions that occur elsewhere, but are attributable to ranch and 
industrial phase activities (e.g., those emissions arising from electricity used on-farm and in 
processing facilities). Although other GHGs such as halocarbons, ozone, and carbon monoxide also 
contribute to climate change, they are not typically included in analyses of agricultural activities [15].  

The carbon footprints were calculated using an updated version of the livestock model used by 
Edwards-Jones et al. [10] and Taylor et al. [16]. The global warming potentials of emissions were 
reported relative to CO2 over a 100-year time horizon, where 1 kg CH4 = 25 kg CO2-eq and 1 kg N2O 
= 298 kg CO2-eq [17]. Sheep farms typically produce multiple saleable outputs, necessitating 
allocation of whole farm emissions amongst products. In this study, the biophysical allocation of 
emissions (protein requirement ratio) between fiber and meat was assumed to be 67% for live lambs 
(meat) and 33% for wool production (following Livestock Environmental Assessment and 
Performance, LEAP [18]). The functional unit used for reporting emissions was 1 kg of live weight 
(LW) finished lamb and 1 kg of wool. 

At farm gate we considered emissions related to the use of fuel (diesel) for internal transport 
(lightweight trucks on-road and trucks/tractors/all-terrain vehicle off-road) and electric generators, 
piped gas for cooking, coal and firewood for heating, fugitive emissions from household refrigerators 
and vehicle air conditioners, and the flows of GHGs into and out of animals, plants, and soils that 
occur on farms (Figure 2). For direct and indirect emissions associated with mobile combustion, 
stationary combustion, electricity consumption, and fugitive emissions, standard Intergovernmental 
Panel on Climate Change, IPCC [17] default emissions factors and equations were utilized when 
country-specific data were not available. 

The measured effect of long-term livestock grazing on C content of the plant-soil grassland 
system (above-ground biomass, below-ground biomass, litter, and soil organic matter to 30 cm) and 
soil respiration (autotrophic, Ra and heterotrophic, Rh) of the studied ecosystems was based on 
previous studies [6,7,19–22]. The net carbon storage at the farm level ranged from 20 to 350 kg C/ha/yr 
depending on grassland condition and ecological area. The emission and consumption of methane 
by soils was estimated following Le Mer and Roger’s [23] calculations. Animals’ GHG emission was 
estimated in the form of CH4 from enteric fermentation, and CH4 and N2O from manure deposition 
by animals on grassland (Figure 2). The emission factor used for lambs was 0.13 kg CH4 per lamb per 
year from enteric fermentation. Neither nitrogenous fertilizer use nor manure management are 
practiced in Patagonia sheep farms. The volatile organic carbon (VOC) estimation was based on 
Kesselmeier and Staudt [24]. Mean direct N2O emissions from soils over a range of grazed grassland 
evaluated were estimated to be 2.45–7.62 kg N2O/ha/yr. This estimation was based on forage quality 
of grassland that determined a mean N intake of 26 kg N/animal/yr and an annual N excretion rate 
of 9.5 kg N/animal/yr. The C loss by leaching (range: 1–12 kg C/ha/yr) and soil erosion (range: 1–40 
kg C/ha/yr) were calculated based in the methodological approach presented by Chartier et al. [25] 
(Figure 2). Animal respiration, which ranged in our study from 25.5 to 95.6 kg C/ha/yr, was estimated 
from previous studies [26–28]. Emissions factors for fossil fuel consumption were based on IPCC [17]. 

To evaluate the effect of condition of grasslands on C footprint, the long-term intensity of 
grazing on each farm was estimated by assuming the mean sheep stocking rates for the main five 
ecosystem types in Santa Cruz [1,29]: (1) Central Plateau Grasslands 0.12 ± 0.02 (moderate grazing) 
and 0.24 ± 0.10 (overgrazed) ewe/ha/yr, (2) Andean Grasslands 0.40 ± 0.07 (moderate grazing) and 
0.75 ± 0.12 (overgrazed) ewe/ha/yr, (3) Humid Magellanic Steppe 0.35 ± 0.08 (moderate grazing) and 
0.65 ± 0.11 (overgrazed) ewe/ha/yr, (4) Mata Negra Shrubland 0.17 ± 0.03 (moderate grazing) and 0.52 
± 0.22 (overgrazed) ewe/ha/yr, and (5) Dry Magellanic Steppe 0.26 ± 0.05 (moderate grazing) and 0.22 
± 0.12 (overgrazed) ewe/ha/yr. 
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Figure 2. Diagram for the calculation of lamb and wool carbon footprint estimations at farm gate, 
with transport and processing in Southern Patagonia. F-CH4 = emission and consumption of methane 
by soils (kg CH4/ha/yr), F-VOC = volatile organic carbon from soil (kg C/ha/yr), F-leach = C leached 
from top soil to deeper layers (kg C/ha/yr), F-erosion = C loss for soil erosion (kg C/ha/yr), F-AP = 
carbon (kg C/yr) leaving the farm as products (wool + lamb), GPP = gross primary production (kg 
C/ha/yr), Autotrophic (Ra) and heterotrophic (Rh) respiration in the soil surface CO2 flux (kg 
CO2/ha/yr), Rani = sheep respiration (kg C/animal/yr), NO2 + CH4 = C content of manure left in the 
ecosystem (kg C/ha/yr), CH4-EF = methane emission from enteric fermentation (kg CH4/ha/yr). 
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2.3. Transport  

Transport from farms to meat and wool industry processing plants were selected by choosing 
the most usual transportation in the region. In one trip, 500 lambs (cargo: 9600–12,500 kg) are 
transported using a semi-trailer diesel truck with three axles (fuel economy of 2.34 km/liter). To the 
wool industry, a semi-trailer diesel truck with three axles (flat truck) generally transports 125 greasy 
wool bales (cargo: 25,000 kg). 

2.4. Industry 

Inputs and impacts associated with lamb and wool processing (Table 3) were collected from an 
industry survey. Primary data on energy use, consumables, refrigerant leakage, wastes, and effluent 
processing were collected from lamb processing plants in Río Gallegos (three factories) and 
Comodoro Rivadavia (one factory in the neighboring province of Chubut) cities, covering all lambs 
processed in Santa Cruz province. Total factory production ranged from 600 to 1600 tons of carcasses 
per year, representing a processing of 60,000–120,000 lambs/yr (Table 3). This corresponds to a meat 
plant of 2500–11,000 m2 with a labor force of 40–160 people. The industry export mainly frozen 
carcasses as well as in-retail. Key parameters included dressing percentages (i.e., from live animal to 
hot carcass) of 55%, cutting and chilling losses of 3%, and retail yield (from cold carcass to retail meat) 
of 76% for bone-in lamb. Allocation of co products at the point of meat processing was: hide 6.1%, 
blood 4.9%, wool 4.3%, inedible offal 1.8%, and tallow 6.9%.  

The wool processing industry, located in Trelew city (Chubut province), processes 7000–8000 t 
wool annually, but demands more water than the lamb industry (Table 3) mainly to obtain scoured 
wool (greasy wool that has been washed to remove contaminants, such as dirt, dust, sweat residue, 
some vegetable matter, and wool grease). The process includes the highest grade wool defined as a 
continuous, untwisted, ribbon of wool (sliver) produced from the combing machine after the fleece 
has been scoured and carded. The combing process removes short and weak fibers (noils), leaving 
long fibers that are aligned parallel to one another. In the present work we estimated the carbon 
footprint of the finest grade wool, which represents 64% of exports according to the Argentine Wool 
Federation. 

Table 3. Range values of major inputs and structure associated with meat and wool processing used 
in this study for carbon footprint calculations in Southern Patagonia. 

Lamb Industry  Range 
Total factory production (t carcass meat/yr) 600–1600 
Working capacity (kg meat carcass/day) 10,000–30,000 
Fresh water consumption (100% consumptive) (l/t carcass) 6000–8000 
Electricity (MWh/yr) 2100–14,500 
Natural Gas (m3/yr) 70,000–120,000 
Diesel (l/yr) 1700–2500 
Wool industry  
Total factory output (t wool/yr) 7000–8000 
Fresh water consumption (100% consumptive) (l/t wool) 65,000–71,000 
Electricity (MWh/yr) 6000–7000 
Natural Gas (m3/yr) 2,500,000–280,000 
Diesel (l/yr) 11,350–14,200 

2.5. Footprint Calculation at Regional Level 

To determine carbon footprint at the regional scale we developed four maps (kg CO2-eq/kg): live 
weight lamb and wool production at farm gate, transport, and industry. To build the live weight 
lamb and wool production carbon footprint maps on-farm, first we used values from 63 sheep farms, 
and then we explored 32 potential explanatory variables (Table 4), which were rasterized at 90 × 90 
m resolution using the nearest resampling technique on ArcMap 10.0 software [13]. Climatic variables 
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(n = 21) [30] included temperature, precipitation, and indexes of annual, monthly, or seasonal 
variations, global potential evapo-transpiration and global aridity index [31]. Topography variables 
(n = 8) included elevation, slope [32], and aspect [33]. Also, Euclidean distances to population center, 
lakes, rivers, and roads were calculated using shape files obtained from Sistema de Información 
Territorial (SIT) Santa Cruz (http://spm.sitsantacruz.gob.ar). Finally, landscape metrics (n = 3), 
including the normalized difference vegetation index (NDVI) [34], net primary productivity (NPP) 
of year 2015 [35] and desertification [36] were tested as explanatory variables. 

Table 4. Explanatory variables used in the carbon footprint analysis of live weight lambs and wool. 

Category Description Code Unit Data Source 
Climate mean annual temperature AMT °C WorldClim(1) 

  mean diurnal range MDR °C WorldClim(1) 
  isothermality ISO % WorldClim(1) 
  temperature seasonality TS °C WorldClim(1) 
  max temperature of warmest month MAXWM °C WorldClim(1) 
  min temperature of coldest month MINCM °C WorldClim(1) 
  temperature annual range TAR °C WorldClim(1) 
  mean temperature of wettest quarter MTWEQ °C WorldClim(1) 
  mean temperature of driest quarter MTDQ °C WorldClim(1) 
  mean temperature of warmest quarter MTWAQ °C WorldClim(1) 
  mean temperature of coldest quarter MTCQ °C WorldClim(1) 
  mean annual precipitation AP mm.years-1 WorldClim(1) 
  precipitation of wettest month PWEM mm.years-1 WorldClim(1) 
  precipitation of driest month PDM mm.years-1 WorldClim(1) 
  precipitation seasonality PS % WorldClim(1) 
  precipitation of wettest quarter PWEQ mm.years-1 WorldClim(1) 
  precipitation of driest quarter PDQ mm.years-1 WorldClim(1) 
  precipitation of warmest quarter PWAQ mm.years-1 WorldClim(1) 
  precipitation of coldest quarter PCQ mm.years-1 WorldClim(1) 
  global potential evapo-transpiration EVTP mm.years-1 CSI (2) 
  global aridity index GAI   CSI (2) 

Topography Elevation (meters above sea level) ELE m.a.s.l. DEM(3) 
  slope SLO ° DEM(3) 
  aspect cosine ASPC cosine DEM(3) 
  aspect sine ASPS sine DEM(3) 
  distance to population centers DL km SIT Santa Cruz(4) 
  distance to lakes DLK km SIT Santa Cruz(4) 
  distance to rivers DR km SIT Santa Cruz(4) 
  distance to roads DW km SIT Santa Cruz(4) 

Landscape and land use normalized difference vegetation index NDVI   MODIS(5) 
  annual net primary productivity ANPP g C.m2.year-1 MODIS(6) 
 desertification DES degree CENPAT(7) 

(1) Hijmans et al. [30], (2) Consortium for Spatial Information (CSI) [31], (3) Digital Elevation Model 
(DEM), Farr et al. [32], (4) SIT Santa Cruz (http://www.sitsantacruz.gob.ar), (5) Moderate Resolution 
Imaging Spectroradiometer (MODIS), ORNL DAAC [34], (6) Zhao et al. [35], (7) Centro Nacional 
Patagónico (CENPAT), Del Valle et al. [36]. 

We used stepwise multiple regressions to identify which variables helped to explain the carbon 
footprint of live weight lamb and wool animal production (kg CO2-eq/kg) at landscape level. We 
employed p < 0.05 for the significance probability for each regression statistic to be included into the 
model, and used 500 steps for the final model selection. The model was evaluated through the 
standard error (SE) of estimation (the r2-adj), defined as the average of the difference between 
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predicted versus observed values, and the mean absolute error (AE), defined as the average of the 
difference between predicted versus the observed absolute values (Statgraphics Centurion software, 
Statpoint Technologies, The Plains, VA, USA).  

To test the model, we performed a calibration procedure by analyzing the mean and absolute 
errors (differences between observed and modeled values of the carbon footprints of live weight lamb 
and wool animal, expressed as kg CO2-eq/kg) (Appendix A). Also, we performed simple and two-
way ANOVAs (Analysis of Variance) and Tukey tests post-hoc, considering ecosystem classification 
and land use intensity.  

With the carbon footprint of live weight lamb and wool (kg CO2-eq/kg) models, we obtained 
two final maps for the entire Santa Cruz province (Argentina), where the variables derived from the 
multiple linear regression models were integrated into a geographical information system (GIS) using 
ArcMap 10.0 software. Then we applied a screening criteria to remove areas with: (i) NDVI < 0.05, 
which included glaciers, water bodies, rocks, and areas without vegetation cover [37], (ii) elevation > 
1200 m.a.s.l., where livestock activities are not practiced due to extreme climate, and (iii) natural 
protected areas. 

To build maps of the carbon footprints (kg CO2-eq/kg) of live weight lamb and wool animal 
transport, first we calculated the accumulated distances (km) from each pixel in the map to the 
industrial processing facilities (origin of the production to the final destination in the local industry). 
For this, we defined Río Gallegos and Comodoro Rivadavia as the final destinations for live lambs, 
and Trelew as the final destination for greasy wool. The modeling was performed considering for 
each pixel the Euclidean distance to the closest road and the accumulated minimum distance to the 
final destination of the existing road network. Each map was the combination of the accumulated 
minimum distance and the Euclidian distance. When two possible destinations existed, the modeling 
selected the minimum distance (e.g., Rio Gallegos or Comodoro Rivadavia). Finally, we applied the 
same mask to remove areas without analysis, as was applied in the carbon footprint production 
analyses. The accumulative distances (km) to Rio Gallegos ranged from 0 to 973 km, for Comodoro 
Rivadavia they ranged from 24 to 978 km, and for Trelew from 412 to 1366 km. The final two maps 
of carbon footprints were the combination of production, transport, and processing of live lamb and 
wool. 

For the map of CF of live lambs resulting values were assigned to three categories: (i) low (10.64–
32.47 kg CO2-eq/kg), (ii) middle (32.48–3.05 kg CO2-eq/kg), and (iii) high (36.06–41.32 kg CO2-eq/kg). 
For the carbon footprint of greasy wool resulting values were allocated to the following: (i) low (7.83–
16.42), (ii) middle (16.43–17.02), and (iii) high (17.03–18. kg CO2-eq/kg). The limits of each CF class 
were defined so that each category contained an equal quantity of pixels for the whole province. We 
analyzed the two maps of CF, considering climatic, topographic, and vegetation variables (Table 4) 
to determine differences among categories using a hexagonal binning processes (each hexagon = 
250,000 ha) and also one-way ANOVAs and Tukey post-hoc test.  

3. Results 

3.1. Carbon Footprint (CF) at Farm Level 

The CF of lamb at the farm gate varied between 12.15 and 38.45 kg CO2-eq/kg live weight lamb 
produced (Table 5). The CF of wool on-farm ranged from 7.83 to 16.92 kg CO2-eq/kg greasy wool 
(Table 5). 

Table 5. Carbon footprint of live weight lamb and greasy wool at farm gate in different ecological 
areas of Santa Cruz province (Southern Patagonia, Argentina) under two contrasting grassland 
conditions. 

Ecological Area 
Grassland 
Condition 

kg CO2-eq/kg Live 
Weight Lamb 

kg CO2-eq/kg Greasy 
Wool 

Andean region Overgrazed 13.92 8.82 
 Good 12.15 7.83 



Sustainability 2020, 12, 3077 10 of 25 

 Mean 12.85 8.15 
Humid Magellanic 
Steppe 

Overgrazed 23.55 12.37 

 Good 15.42 11.46 
 Mean 20.64 12.15 
Dry Magellanic 
Steppe 

Overgrazed 26.05 13.74 

 Good 16.02 12.43 
 Mean 22.74 13.28 
Mata Negra Thicket Overgrazed 33.31 14.66 
 Good 22.71 13.29 
 Mean 30.11 14.15 
Central Plateau Overgrazed 38.45 16.92 
 Good 25.87 15.13 
 Mean 35.16 16.33 

On-farm emissions, the largest contributors to the CF (75–90% of total carbon footprint) were 
determined by natural processes associated with sheep utilizing grasslands as a feed source. These 
processes included methane production from rumen digestion of grass and herbs via enteric 
fermentation, which account for 60–65% of the carbon footprint. The direct and indirect N2O 
emissions represented 27–30% of the total on-farm carbon footprint. Emissions from external inputs, 
such as fuel and electricity, only accounted for a small percentage of the carbon footprint (7–8%) of 
sheep farming in Patagonia. 

3.2. Transport, Meat, and Wool Processing 

Transport emissions ranged from 0.30 to 0.95 kg CO2-eq/kg product/km. Depending on distances 
to industrial processing facilities, they represented from 3% to 15% of the total carbon footprint. 

The mean CF of lamb after processing was 3.31 kg CO2-eq/kg of product (carcass), and ranged 
from 1.52 to 4.40 kg CO2-eq/kg of product depending on the size and efficiency of the industrial 
processing facility. Meat processing made up 6–10 percent of the total lamb carbon footprint. This 
was mainly from energy use (electricity: 76–91% of total carbon footprint of the processing plant and 
fuel: 4–14%) and wastewater processing (5–10%). A range of fossil fuels are used across different 
processing facilities, largely for hot water and steam. The main use of electricity is for chilling and 
freezing meat. Electricity is also used to operate machinery, for lighting, and wastewater treatment. 
Methane and nitrous oxide are emitted during some wastewater processes. 

The mean CF of fine-grade wool after processing was 1.20 kg CO2-eq/kg of product. Wool 
processing made up only 2–5 percent of the total lamb carbon footprint. This was mainly from fuel 
(55% of total carbon footprint in the wool processing factories), purchased electricity (28%), and 
wastewater processing (17%). 

3.3. Carbon Footprints (CF) at Regional Level 

Modeling of CF (kg CO2-eq/kg live weight) for lambs at the farm gate that used a stepwise 
multiple regression procedure identified a regression model with two important independent 
variables: temperature seasonality (TS) and normalized difference vegetation index (NVDI, 
dimensionless). The fitted model (r2-adj = 0.955; F = 660.8; SE = 5.06; AE = 4.32) explained 95.5% of 
variation in CF of lamb and had the following form: 

Carbon footprint lamb (kg CO2 eq/kg live weight lamb) = 7.55791*TS – 21.6853*NDVI (1) 

The most important variables for the model of CF of greasy wool production were isothermality 
(ratio of average day variation in temperature divided by annual variability in temperature) (ISO, %), 
temperature seasonality (TS), and normalized difference vegetation index (NVDI, dimensionless). 
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The fitted model (r2-adj = 0.987; F = 1607.5; SE = 1.41; AE = 1.05) explained 98.7% of variation in CF of 
greasy wool and had the following form: 

Carbon footprint Wool (kg CO2 eq/kg greasy wool) = 0.23941*ISO + 1.21981*TS – 
10.5486*NDVI 

(2) 

When univariate correlations were performed these variables correlated strongly with the CFs 
of lamb and wool and there was no evidence of collinearity between them (p < 0.001).  

The map of the adjusted CF of live weight lamb production at farm gate model showed a 
continuous increase from west-southwest to the northeast and central areas of Santa Cruz province 
(variation from 7.17 to 37.95 kg CO2-eq/kg live weight lamb) (Figure 3). The map of the CF of wool 
production on-farm across Santa Cruz exhibited similar spatial trend to the pattern for lamb and 
ranged from 5.40 to 16.42 kg CO2-eq/kg greasy wool (Figure 4). The lowest CF values of both products 
(lamb and wool) were located in more productive grasslands. 

 
Figure 3. Carbon footprint of lamb production (kg CO2-eq/kg live weight lamb) at farm gate in Santa 
Cruz province, South Patagonia, Argentina. Black areas represent NDVI < 0.05, elevation > 1200 
m.a.s.l., and natural protected networking areas where there are no livestock. 
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Figure 4. Carbon footprint map of greasy wool production (kg CO2-eq/kg wool) at farm gate in Santa 
Cruz province, South Patagonia, Argentina. Black areas represent NDVI < 0.05, elevation > 1200 
m.a.s.l., and natural protected networking areas where there are no livestock. 

When assessed on a univariate basis the majority of the independent variables considered in this 
analysis presented significant correlations with the CF of lamb and greasy wool production (Figures 
5 and 6). At low Mean Annual Temperature (MAT), for example, the CF at farm gate of meat and 
wool production was also low (Figure 5). Other related temperature variables showed similar 
correlations with the CFs (TS, MAXWM, MINCM, MTDQ, MTWAQ, MTCQ, TAR, MDR). MTWEQ 
did not present a clear pattern of variation, and the CF was high at low values of isothermality (ISO). 
Rainfall (MAP) also influenced the CF of lamb and greasy wool at farm gate. A low CF occurred at 
higher precipitation (Figure 6). The correlation between CF and other rainfall variables (PWEM, 
PDM, PWEQ, PDQ, PWAQ, PCQ) followed a similar pattern. CF values decreased with 
evapotranspiration (EVTP). CF values were generally low where slope values were high, and there 
was no correlation, either positive or negative, of elevation with the CFs. As normalized difference 
vegetation index (NDVI) and net primary productivity (NPP) increased, values of lamb and wool CF 
at farm gate decreased (Figure 6).  
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Figure 5. Mean values of carbon footprint at farm gate (kg CO2-eq/kg product) for the Santa Cruz 
province (dotted line) and ANOVAs for temperature (°C) variables classified according to the carbon 
footprint map for live weight lamb (black) and wool (red). Capital letters show differences among 
carbon footprint map classes (low, middle, and high) and lowercase letters show differences between 
products (lamb and wool) using Tukey test at p < 0.05. 
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Figure 6. Mean values of carbon footprint at farm gate (kg CO2-eq/kg product) for the Santa Cruz 
province (dotted line) and ANOVAs for precipitation, topographic, and vegetation variables 
classified according to the carbon footprint map of live weight lamb (black) and wool (red). Capital 
letters show differences among carbon footprint map classes (low, middle, and high) and lowercase 
letters show differences between products (lamb and wool) using the Tukey test at p < 0.05. 

The final maps at regional level of total CF of lamb and wool were obtained from the 
combination of emissions from on farm production, transport, and industrial processing. The total 
CF of lamb production varied from 10.64 to 41.32 kg CO2-eq/kg for lamb meat (carcass) (Figure 7) and 
for fine-grade wool from 7.83 to 18.70 of kg CO2-eq/kg wool (Figure 8). 
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Figure 7. Total carbon footprint (the combination of emissions produced on farm, via transport and 
via industrial processing) of lamb production (kg CO2-eq/kg lamb carcase) in Santa Cruz province, 
South Patagonia, Argentina. Black areas represent NDVI < 0.05, ELE > 1200 m.a.s.l., and natural 
protected areas where there are no livestock. 
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Figure 8. Total carbon footprint (the combination of emissions produced on farm, via transport and 
via industrial processing) of fine grade wool (kg CO2-eq/kg wool) in Santa Cruz province, South 
Patagonia, Argentina. Black areas represent NDVI < 0.05, ELE > 1200 m.a.s.l., and natural protected 
areas where there are no livestock. 

The mean total CF across Santa Cruz province was 33.25 kg CO2-eq/kg for lamb meat (carcass), 
segmented into 90% for the on-farm stage, 1% for transportation, and 9% for meat processing (Figure 
9). For wool, the mean provincial total CF was 16.45 kg CO2-eq/kg for fine grade wool, segmented 
into 88% for the on-farm stage, 5% for transportation, and 7% for wool processing (Figure 9). 
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Figure 9. Relative contribution (as a proportion) to mean total carbon footprint (kg CO2-eq/kg 
product) of lamb meat (carcass) and fine-grade wool in Santa Cruz province, South Patagonia, 
Argentina. 

4. Discussion 

Variability in gas emissions between farms can be attributed to differences in grassland 
condition, that in turn can be related to long-term grazing management and climate conditions. Our 
models for CF prediction of lamb and greasy wool at the farm gate were able to account for 95–98% 
of the variation of CFs across the entire Santa Cruz province. In the present study, CFs were mainly 
a function of climate (isothermality and temperature seasonality) and vegetation (normalized 
difference vegetation index, NVDI). Also, the prediction and mapping of CF at the macro scale is 
possible using freely available geospatial data. The correlation between CFs and climate variables 
may reflect the influence of climate variables on semi-arid ecosystem productivity, which is mainly 
related to water limitation. In this work, production from grassland in good ecological condition in 
the Andean grasslands had significantly lower CF for lamb and greasy wool than production on 
overgrazed and ecologically degraded sites in the less productive Central Plateau Grasslands. Thus, 
the climate, the topography, and the vegetation all influenced CF, and all interacted with grazing 
intensity in the long-term. The variation in CFs from meat and wool production across the province 
may reflect the impact of harsh environmental conditions (low temperature and drought). Production 
of meat and wool on low-productivity grasslands had relatively high CFs, whereas CFs on more 
productive grasslands (higher NDVI and NPP) tended to be lower. This is consistent with Jones et al. 
[38], who reported an increase in lamb CF from lowland intensive flocks to more extensive flocks in 
the uplands and hills, and this difference was attributable to the number of lambs reared per ewe 
mated and lamb growth rates calculated from empirical data collected from 64 sheep farms across 
England and Wales. Similarly, Ripoll-Bosch et al. [39] reported a lamb CF that ranged from 19.5 kg 
CO2-eq/kg LW in productive high-intensity grazing areas to 25.9 kg CO2-eq/kg LW under extensive 
management in less favorable areas in Spain. These results showing a lower CF from higher 
productivity grazing systems parallel to some degree the results on land sharing versus land sparing, 
which demonstrated that increasing food production could probably be achieved at the least cost to 
biodiversity by investing in high-yield agriculture on relatively small extensions of land and sparing 
completely other tracts of land [40]. The fact that CFs appear to be lower in these high-productivity 
grazing systems is another compelling reason to consider the land sparing strategy. However, 
additional criteria, such as the tendency for species at risk of extinction to be concentrated on 
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On-farm Transport Processing
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productive land [41], needs to be integrated in a systematic way into these types of analysis and 
decision-making.  

In the present study the CF from lamb and greasy wool production was always greater, in all 
five types of ecosystem studied, when said production took place on degraded/overgrazed grassland 
(Table 5). This has been recognized by Schonbach et al. [42], who reported that sheep grazing on Inner 
Mongolian Steppe changed the net GHG balance of the grassland from a significant sink at ungrazed 
sites (−1476 kg CO2eq/ha/yr) to a significant source at heavily grazed areas (3115 kg CO2eq/ha/yr), 
predominantly determined by respiratory losses of CO2 from topsoil organic carbon. Higher losses 
of carbon from topsoil on overgrazed sites is also the case in the Patagonian sites [1]. 

4.1. Comparison of the Patagonian Data with Data from Other Regions 

The synthesis of results from previous studies of CFs in grazing systems is made difficult by the 
fact that significant methodological differences exist between studies. The CFs are derived from 
different models and/or use different system boundaries. In Table 6 we present lamb CF data at farm 
gate from other countries. In the present study, the CF of lamb at the farm gate varied between 12.2 
and 38.4 kg CO2-eq/kg live weight lamb using empirical data collected on-farm, and from 7.2 to 37.9 
kg CO2-eq/kg live weight lamb when estimates were obtained from the fitted regional model (map). 
When comparing with the international literature, the values in the present work overlapped with 
most of the other published data (Table 6). For example, our data were in the range of those reported 
by Edwards-Jones et al. [10] for lamb production in Wales. However, in Santa Cruz province most of 
the farms (75% of the total province area) showed values > 33 kg CO2-eq/kg live weight lamb (Figure 
3), which is higher than those from the literature (Table 6). This may be due to differences in on-farm 
management systems and the fact that Patagonian grasslands have low levels of primary productivity 
due to the extreme climate. The low CO2-eq values found in New Zealand [43] may reflect a higher 
wool production per ewe and the fact that wool is economically more important for producers in 
New Zealand than in other countries. Furthermore, it has been reported that emission of CH4 
increases as feed digestibility decreases [44]. The low digestibility of grasses in Patagonia (49 ± 5.5%) 
may have increased CH4 emissions at farm level compared with the more intensive productive 
grazing systems common in New Zealand. Furthermore, in the case of New Zealand the economic 
focus is on wool production, instead of meat [43], and this also may have contributed to the lower 
carbon footprint in New Zealand.  

The choice of models to calculate carbon footprints may also explain some of the discrepancy 
between results from Patagonia and the results reported in the wider literature. According to 
Wiedemann et al. [45,46], GHG emissions based on mass balance calculations resulted in 10–12 kg 
CO2-e/kg greasy wool across Merino farms (New Zealand, Australia, and UK), whereas this value 
increases to 24–38 kg CO2-e/kg greasy wool when emissions from sheep are made using 
physiological-based process models that include, for example, enteric methane liberation from the 
digestion of grass. In Western Australia, for example, Eady et al. [47] found for a mixed sheep and 
grain farm that mass balance calculations gave a result of 28.7 kg CO2-eq/kg greasy wool while a 
more sophisticated model that included sheep physiology gave a value of 36.2 kg CO2-eq/kg greasy 
wool. This highlights method selection when considering GHG mitigation approaches.  

Table 6. Estimates of lamb (kg CO2-eq/kg live weight lamb) and greasy wool (kg CO2-eq/kg wool) at 
fam level carbon footprints reported in the literature. 

System and Methods Country Carbon Footprint 

(kg CO2-eq/kg product) 

Reference 

Lamb    

Conventional extensive with 

real farm data 

Modeled at the regional scale 

Patagonia, 

Argentina 

12.2–38.4 

 

7.2–37.9 

This study 

 

This study 
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Conventional with real farm 

data 

Wales, UK 8.1–31.7 Edwards-Jones et al. 

[10] 

Average sheep 

system in Ireland 

Ireland 10 Casey and Holden 

[48] 

Conventional with real farm 

data (lowland—27 farms, 

upland—12 farms, hill—21 

farms) 

UK 10.8–17.9 Jones et al. [38] 

Model and real farm data 

(three systems) 

Spain 19.5–25.9 Ripoll-Bosch et al. [39] 

Survey from 104 farms France 12.9 Gac et al. [49] 

Model Australia 10.1–21.7 Bell et al. [50] 

Model Australia 14.4 Wiedemann et al. [45] 

Survey from 437 

farms 

New Zealand 8–10  Ledgard et al. [43] 

Experimental study sites with 

different grazing intensity 

levels 

Northern 

China 

10.4–92.0 Schonbach et al. [42] 

Greasy wool    

Conventional extensive with 

real farm data 

modeled at the regional scale 

Patagonia, 

Argentina 

7.8–16.9 

 

7.8–18.7 

This study 

 

This study 

Study cases Australia, New 

Zealand, UK 

10–12 Wiedemann et al. [46] 

Farm-scale data in three 

contrasting regions 

Australia 19.5–25.1 Wiedemann et al. [51] 

Study case  Australia 36.2 Eady et al. [47] 

Inventory data for two  

Merino farms and model  

Australia 8.5–8.7 Cottle and Cowie [52] 

4941 breeding ewe enterprise 

on 1000 ha 

Australia 14.8–24.9 Brock et al. [53] 

4.2. Industrial Processing 

The mean CF of lamb after processing by industrial facilities (abattoirs) ranged from 1.52 to 4.40 
kg CO2-eq/kg carcass (6–10% of total carbon footprint) and for fine-grade wool it was 1.20 kg CO2-
eq/kg of product (2–5% of total carbon footprint). These values depend on the size and efficiency of 
the processing plant. There are opportunities for meat processors to reduce this contribution further, 
particularly with regard to energy used for refrigeration, water heating, and operation of machinery, 
and also by improving wastewater management [45]. Nevertheless, the CF improvements that can 
be achieved through improved industrial processes are small. In the wool industry in Australia, the 
most effective strategies for reducing greenhouse gas emissions have been achieved by improving 
grazing management and through genetic improvement programs that increase wool yield [54]. 
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4.3. Carbon Footprints (CF) at Regional Level 

Total CF of lamb and wool (the combination of emissions produced on farm, via transport, and 
via industrial processing) varied from 10.64 to 41.32 kg CO2-eq/kg for lamb meat (carcass) and from 
7.83 to 18.70 of kg CO2-eq/kg for fine-grade wool. On-farm emissions represented the largest 
contribution to the CF (75–90% of the total), mainly attributable to methane from rumen digestion of 
grass (enteric fermentation), which accounted for 60–65% of the CF. Transport represented 3–15%, 
meat processing 6–10%, and wool processing 2–5% of the total CF. This is consistent with Wiedemann 
et al. [46], who reported in an analysis of Australian red meat export supply chains that lamb primary 
production was the main source of greenhouse gases, accounting for 90% of said emissions, from 
which 75% of emissions were from enteric methane production. Meat processing (6%) and 
transportation (4%) were only minor sources of greenhouse gases. Similarly, for New Zealand lamb 
production, greenhouse gas emissions are dominated by the production phase of the supply chain 
[43]. Cottle and Cowie [52] also reported that for Merino wool production total GHG emissions are 
dominated (76–79%) by livestock (enteric methane production and methane and nitrous oxide 
emissions from manure), with emissions from purchased inputs, transport, and services contributing 
13–14%. Thus, on-farm emissions are the most significant contributor to the footprint and also the 
most challenging to reduce. Improvements on-farm through management interventions that increase 
the conversion of forage to meat (genetics/breeding) are important [52]. In New Zealand, 
improvement of the carbon footprint in the sheep sector is occurring through an increase in the 
proportion of ewe hoggets mated, resulting in more lamb production for each kilogram of feed eaten 
by the sheep flock [43]. Other alternatives are related to feeding management, where practices 
increasing feed efficiency and animal performance generally reduce CH4 emissions [55]. For example, 
feed supplements in cows with unsaturated lipids usually decrease CH4 emissions [56]. Also, a 
number of rumen modifiers that decrease CH4 production have been proposed and tested in the past 
decade, the most promising of which appear to be biochar-based supplements [55].  

Farms with higher productivity maximize their output from the resources invested and 
emissions linked to adult animals, and consequently reduce their CF per kilogram of lamb meat and 
wool produced. In this context, intensifying animal production is generally advocated to mitigate the 
emission of greenhouse gases associated with production of animal food or wool [57]. From the 
perspective of a carbon footprint, extensive livestock systems common in Patagonia result in low 
production efficiency, which then results in high gas emissions per unit of product produced. This 
highlights the potential conflict between carbon efficiencies and other environmental objectives [10]. 
In Patagonia, we can improve lamb output per ewe by selective breeding that improves ewe 
productivity, increasing lamb survival through better management at birth and by improving 
nutritional management.  

Besides its primary function of producing lamb meat and wool, most sheep farming systems in 
Patagonia provide other benefits to society, such as sustainable management of renewable natural 
resources, conservation of some components of biodiversity, and the maintenance of socio-economic 
viability for many rural areas, especially in remote areas. The wide open spaces on sheep farms are 
also a central component of the national identity and sense of place [58]. These cultural ecosystems 
services are generally ignored when comparing emissions of greenhouse gases among production 
systems that differ in intensity, which generally favor intensive production systems. Furthermore, 
we believe that assessing carbon footprints of products does not give complete answers to what is 
the best strategy for mitigating greenhouse gas emissions. Life cycle assessments (LCA) is a widely 
accepted and standardized method to evaluate environmental impact during the entire life cycle of a 
product [59]. The carbon footprint is a single-facet of LCA that focuses on emission of greenhouse 
gases for a single product. The product in an LCA not only refers to material products, such as meat 
or wool, but may also include ecosystem services, such as landscape biodiversity conservation 
[60,61]. In the case of ruminants and their gas emissions, extensive systems are usually found to have 
a lower per-area footprint than intensive grain-fed systems but a higher footprint when expressed as 
per kg of product produced. Emissions per kg of product expressed per unit of land used are 
important once issues concerning land quality (and the impact of livestock on this quality) and the 
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multifunctional aspects of land use are included in the analysis. In this context, promotion of 
sustainability-oriented economies within the region could bring Patagonian export commodities 
recognition in international markets and facilitate entrance into niche, premium markets. Evidence 
for this is available under the Patagonia Grassland Regeneration and Sustainability Standard 
(GRASS) implemented by Patagonia Inc., the Nature Conservancy and Ovis XXI’s in conjunction with 
Argentinian government agencies and conservation organizations. In addition, it is strategic for the 
region to study the issue as a means to define local or regional emission factors as well as disseminate 
and discuss among the various stakeholder cost-effective mitigation options throughout Patagonia. 
It is encouraging that many of the measures that could mitigate GHG emissions at the farm level 
could also improve productivity and profitability in the sheep business. Furthermore, should markets 
develop for grassland C sequestration, results of previous studies suggest that arresting overgrazing 
and implementing moderate grazing intensity could sequester substantial amounts of atmospheric C 
in grassland soils [5–7]. Thus, grassland C sequestration could offset a significant proportion of 
emissions associated with ruminant production systems. Analysis that includes ecosystem C stocks 
will favorably position the region to take advantage of these grassland carbon credits. This should 
gain traction in compliance and/or voluntary markets.  

5. Conclusions 

This study has provided the first CF of lamb and wool production in Patagonia at farm gate and 
at the regional scale, including the principal ecosystem types found on Patagonian rangeland. We 
found that CF was more sensitive to the effects of grassland condition due to grazing (stocking rates) 
than the other variables, such as transportation distances and emissions resulting from industrial 
processing. The successful management of livestock GHG emissions becomes an important challenge 
to the scientific, commercial, and policy communities. The results of CF for lamb and wool production 
found in the present work assist in characterizing the greenhouse gas emissions profile of livestock 
products in Southern Patagonia by providing a baseline against which mitigation actions can be 
planned and progress monitored.  
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Appendix A 

Table A1. Model performance analysis of carbon footprint of lamb production (kg CO2 equiv./kg live 
weight) using ecosystem classification and model selected variables, where (*) indicates overgrazing. 

Ecosystem Classification N Carbon Footprint Modeled Mean Error Absolute Error 
Central Plateau 5 25.87 30.48 −4.61 4.61 
Central Plateau* 4 38.45 31.24 7.21 7.21 

Humid Magellanic Steppe 3 15.42 12.22 3.20 3.20 
Humid Magellanic Steppe* 2 23.55 18.76 4.79 4.79 

Dry Magellanic Steppe 4 16.02 22.27 −6.25 6.25 
Dry Magellanic Steppe* 5 26.00 22.31 3.69 3.69 

Mata Negra Thicket 8 22.71 27.35 −4.64 4.84 
Mata Negra Thicket* 11 33.31 28.23 5.08 5.08 

Andean Region 10 12.15 15.97 −3.82 3.98 
Andean Region* 11 13.92 13.64 0.28 2.13 
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Temperature seasonality (°C)           
<3.80 20 14.96 14.11 0.85 2.47 

3.80–4.20 21 20.16 21.65 −1.48 4.84 
>4.20 22 30.48 29.75 0.74 5.51 

NDVI (dimensionless)           
<0.23 20 30.20 29.80 0.40 5.35 

0.23–0.50 21 23.55 23.38 0.17 5.17 
>0.50 22 13.40 13.83 −0.43 2.58 
Total 63 22.12 22.08 0.03 4.32 

Table A2. Model performance analysis of carbon footprint of greasy wool production (kg CO2 
equiv./kg wool) using ecosystem classification and model selected variables, where (*) indicate 
overgrazing. 

Ecosystem Classification N Carbon footprint Modeled Mean Error Absolute Error 
Central Plateau 5 15.13 14.50 0.63 0.68 
Central Plateau* 4 16.92 14.89 2.03 2.03 

Humid Magellanic Steppe 3 11.46 9.13 2.33 2.33 
Humid Magellanic Steppe* 2 12.37 11.71 0.66 0.79 

Dry Magellanic Steppe 4 12.43 13.02 −0.59 0.66 
Dry Magellanic Steppe* 5 13.74 12.91 0.83 0.84 

Mata Negra Thicket 8 13.29 14.24 −0.95 1.32 
Mata Negra Thicket* 11 14.66 14.39 0.27 0.39 

Andean Region 10 7.83 9.49 −1.66 1.66 
Andean Region* 11 8.82 8.83 −0.01 0.74 

Isothermality (%)           
<47 16 12.08 12.08 0.00 1.53 

47–48 34 12.16 12.30 −0.15 0.89 
>48 13 12.09 11.70 0.39 0.91 

Temperature seasonality (°C)           
<3.80 20 9.73 9.39 0.34 0.92 

3.80–4.20 21 11.55 12.07 -0.52 1.34 
>4.20 22 14.85 14.66 0.19 0.90 

NDVI (dimensionless)           
<0.23 20 14.86 14.69 0.17 1.00 

0.23–0.50 21 13.02 12.99 0.03 0.97 
>0.50 22 8.78 8.96 -0.18 1.18 
Total 63 12.12 12.12 0.00 1.06 
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