

Catálogo de Padres Merino Mocho

Catálogo Nº 27

Mayo 2021

Catálogo de Padres Merino Mocho 2021

Autoridades

Presidente Instituto Nacional de Tecnología Agropecuaria (INTA) Ing. Agr. Susan Mirassou Presidente Asociación Argentina Criadores de Merino (AACM) Dr. Diego Perazzo

Responsables

Comisión Técnica INTA-AACM

Dr Joaquín Mueller Ing Prod Agrop Carlos Epper

Comisión Técnica Laboratorios de Lana

Ing Qco Mario Elvira Ing Zoot Diego Sacchero Ing Ernesto González Ing Agr Néstor Franz

Comisión Técnica Provino

Dr Mauricio Alvarez Dr Alejandro Vozzi Dr Daniel Maizon Lic Gen Nicolás Giovannini Dr Joaquín Mueller

Antecedentes

En 1990 comienzan en Argentina las primeras pruebas de progenie de la raza Merino en Ea Leleque y un año más tarde comienza a operar la Central de Pruebas de Progenie del INTA en Pilcaniyeu en convenio con la AACM. La información generada en sucesivos años es combinada y a partir de 1994 se publica anualmente en forma de Catálogo de Padres. En el 2000 comienza a operar la Central de Pruebas de Progenie del INTA en Río Mayo, operada con apoyo de Ley Ovina, y progresivamente se incorpora a las evaluaciones de padres información generada a nivel de las propias cabañas. En el 2007 se realiza la última prueba de progenie. La información generada en las centrales de prueba y en las cabañas es utilizada para producir los Catálogos de Padres. Desde 2006 se publican Catálogos de Padres Merino Astado y Merino Mocho por separado.

Introducción

Presentamos en este Catálogo el mérito genético de padres Merino Mocho evaluados utilizando toda la información disponible a la fecha. Se trata de sus propios registros de producción, la producción de su progenie y la producción de otros parientes. Para ello se considera el grado de parentesco entre el animal y esos parientes utilizando la información genealógica disponible en la AACM. Los padres evaluados son todos aquellos utilizados en los planteles participantes y aquellos probados en las Centrales de Pruebas de Progenie. Estos incluyen padres (o su semen) importado o padres comprados a otras cabañas.

Planteles evaluados

Tabla 1: Planteles y centrales de prueba que aportan información a la evaluación poblacional.

Plantel	Ubicación	Contacto	Email
Ayelen	Entre Ríos	Matías Barbieri	marb@admcampos.com
Cabo Blanco	Santa Cruz	Flavio Figueroa	flaviofigueroa@speedy.com.ar
Coy Aike	Santa Cruz	Rodrigo García Patella	rodrigo@coyaike.com
Las Vegas	Santa Cruz	Santiago Sama	sama.jim@gmail.com
Maitén	Chubut	Ronald McDonald	ciadetierras@ar.inter.net
Media Luna	Chubut	Ernesto Ayling	ernestoayling@gmail.com
Laguna del Toro	Chubut	Carlos Otamendi	caotamendih@otamendiycia.com
Tecka	Chubut	Carlos Moralejo	camoralejo63@gmail.com
Pilcaniyeu*	Río Negro	Nicolás Giovannini	giovannini.nicolas@inta.gob.ar
Río Mayo*	Chubut	Alejandro Vozzi	vozzi.alejandro@inta.gob.ar
Río Pico	Chubut	Julián Gonzalo	juliangonzalo_h@yahoo.com

^{*} Centrales de prueba de progenie.

Mediciones

Los registros de producción habituales en borregas y borregos son el peso de vellón, el peso corporal, los resultados del análisis de una muestra de vellón que incluyen el rinde al lavado y el consiguiente peso de vellón limpio, el promedio del diámetro de fibras, su coeficiente de variación y el factor de confort. En algunos planteles también se están registrando el peso al destete, el largo de mecha y la resistencia a la tracción de la mecha. En algunos casos se registran también datos de la segunda esquila de machos. Toda la información es usada en las evaluaciones genéticas.

DEPs

El mérito genético de los padres para cada característica es presentado como DEP, Diferencia Esperada en la Progenie. Como dice la expresión, la DEP para una característica como el peso de vellón representa la diferencia en peso de vellón que se espera en la progenie de ese padre respecto a la de otro padre promedio nacido en el año 2000 (año tomado como referencia, ver más abajo). Para ello se asume que esa progenie nació del apareamiento del padre con una madre promedio del año de referencia. Por ejemplo un padre con DEP para peso de vellón de 0,1 kg, tendrá progenie con 100 g más de lana que un padre promedio nacido en el año 2000, si ambos fueran apareados con ovejas similares. Del mismo modo un padre con DEP para diámetro de fibra de -0,4 mic tendrá progenie con lana 1 mic más fina que un padre con DEP para diámetro de fibra de 0,6 mic.

Factores considerados

Para predecir las DEPs, Provino utiliza procedimientos BLUP similares a los usados globalmente en la evaluación genética de animales. Estos procedimientos permiten aislar factores no genéticos de los estrictamente heredables. Un ejemplo puede ilustrar este procedimiento de aislación. Supongamos dos animales cuyos pesos de vellón se diferencian en 1 kg. Los factores que pueden explicar al menos parte de esa diferencia son: la cabaña de nacimiento, el año, el sexo, el tratamiento de alimentación, la edad de la madre, el tipo de nacimiento y la edad a la esquila. BLUP corrige esa diferencia en peso de vellón por todos esos factores, dejando solo la diferencia de pesos de vellón que se hereda.

Herencia y correlaciones

Para estimar las DEPs, BLUP considera el nivel de heredabilidad de cada característica y también considera las correlaciones que hay entre características. Así por ejemplo un padre igual a otro en producción de lana pero con menor diámetro de fibras, tendrá DEP para peso de vellón algo menor porque su finura indica tendencia a tener menos lana. Por el mismo motivo también BLUP permite estimar DEPs para caracteres no medidos.

Índices de selección

Cada padre evaluado tendrá DEPs para varias características y el criador interesado en mejorar alguna en particular podrá elegir entre los padres que mejor DEP tengan para esa característica. Muchas veces interesan padres con una combinación de características positivas. Para eso se calculan índices de selección como la sumatoria de las DEPs ponderadas por su importancia económica. En otras palabras padres con mayor índice tendrán progenie que en la suma de sus diferencias genéticas tienen mayor valor económico. Las ponderaciones económicas pueden variar considerablemente, pero su peso relativo entre características suele variar poco. Anualmente se discuten esas ponderaciones y de acuerdo a las demandas más comunes se calculan y presentan dos índices para la raza Merino. Un índice, el "Lanero", que prioriza animales de alto peso de vellón y peso corporal manteniendo la finura actual, y otro índice, el "Afinador", que pone énfasis en animales de lana más fina. En la Figura 1 se ilustra el énfasis, en términos económicos, que cada índice pone en peso corporal (PCD+PC1+PCA), peso de vellón limpio (PVL) y diámetro de fibras (PDF).

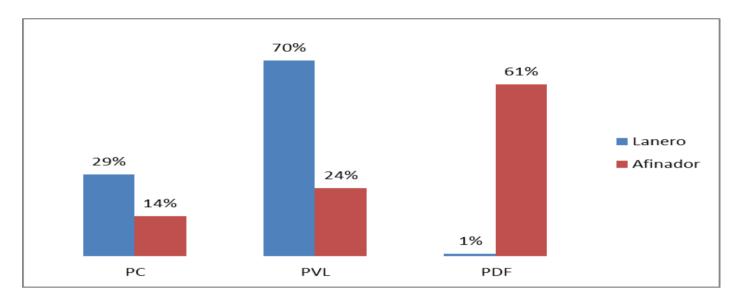


Figura 1: Énfasis de los dos índices para el mejoramiento genético del peso corporal (PC), peso de vellón limpio (PVL) y diámetro de fibras (PDF). Por ejemplo el índice Lanero pone un 70% de importancia al peso de vellón limpio, 29% al peso corporal y solo un 1% al diámetro.

Los índices apuntan a varias características al mismo tiempo por ello no logran el máximo mejoramiento posible, o potencial, en una característica en particular si solamente se seleccionaría por ella. En la Figura 2 se ilustra la proporción del mejoramiento genético potencial que logran en cada característica los dos índices.

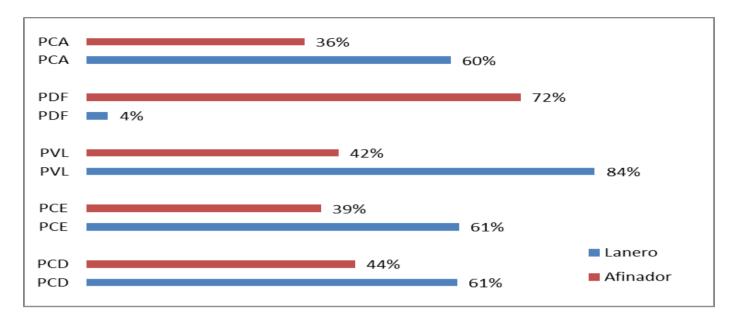


Figura 2: Proporción del mejoramiento potencial que alcanza cada índice en cada carácter. Por ejemplo el índice Lanero alcanza el 84% del mejoramiento potencial que se obtendría seleccionando solamente por peso de vellón limpio (PVL).

Exactitudes

Las DEPs, y en consecuencia también los índices, se predicen con diferentes exactitudes según la cantidad y calidad de información disponible. Así un padre con datos de 5 hijos tiene DEPs con una exactitud baja y un padre con 25 hijos tiene DEPs con exactitud alta. Un 100% de exactitud equivale a información disponible de muchos (infinitos) hijos. Exactitudes mayores a 80% se consideran altas, exactitudes menores a 60% bajas. Cada DEP tiene su exactitud. En este catálogo se presenta una exactitud promedio de las principales DEP (peso corporal, peso de vellón y diámetro de fibras). Provino calcula las exactitudes usando toda la información disponible y típicamente en la medida que aumenta la información de un plantel aumenta la exactitud de sus DEPs.

Año de referencia

En este catálogo el año de referencia es el año 2000. Esto significa que las DEPs promedio de los animales nacidos en el año 2000 se ajustan = 0,0 para todos los caracteres. Del mismo modo los índices se estandarizan con promedio = 100 y desvío estándar = 10 para el año de referencia. Cabe señalar que los ajustes y la estandarización permiten una mejor interpretación de las DEPs e índices pero no modifican el ordenamiento y diferencias relativas entres los padres. Los promedios de producción en el año de referencia se visualiza en Tabla 2.

Tabla 2: Valores fenotípicos en el año de referencia.

Abreviación	Unidad	Descripción	Promedio año referencia
PCD	kg	Peso corporal al destete	29,10
PC1	kg	Peso corporal a la primera esquila	49,02
PVL1	kg	Peso de vellón limpio	2,53
PDF1	mic	Promedio diámetro de fibras	17,35
CVF1	mic	CV del promedio diámetro de fibras	19,31
LM1	mm	Largo de mecha	72,1
RT1	N/ktex	Resistencia a la tracción	38,0
PC2	kg	Peso corporal adulto	74,4

Consanguinidad

La consanguinidad de un padre mide la proporción de genes que provienen de un antecesor común. Por ejemplo un animal nacido de un padre que a su vez fue padre de su madre (apareamiento padre-hija) tiene una consanguinidad del 25%, porque la mitad de los genes de su madre también vienen de su padre. Un alto nivel de consanguinidad alcanzado en pocas generaciones suele provocar taras o depresión de producción, en particular en caracteres reproductivos. En este catálogo se presentan los niveles de consanguinidad estimados con la genealogía disponible.

Criterio de publicación:

Se presentan resultados para padres con progenie evaluada en las últimas 5 camadas, con un mínimo de 10 hijos/as y con al menos 60% de exactitud promedio de las DEPs principales.

Progreso genético:

El catálogo presenta en forma gráfica el progreso genético observado en la población evaluada. Para ello se grafican los valores de cría (VC = DEPs x 2) promedio de las camadas nacidas desde el año 2000. Se puede observar que para el año 2000 las DEPs son = 0,0 y los índices son = 100, ya que se trata del año de referencia. Las Figuras 1, 2 y 3 indican el mérito genético de los animales nacidos en cada año independiente de los efectos ambientales (climáticos o de manejo).

Abreviaciones

Tabla 3: Abreviaciones usadas en el catálogo.

Abreviación	Unidad	Descripción
dep		Diferencia esperada en la progenie en unidad del carácter
vc		Valor de cría (= DEP x 2)
NCD		Número de corderos destetados
PCD	kg	Peso corporal al destete
PC1	kg	Peso corporal a la primera esquila (borrego)
PVL1	kg	Peso de vellón limpio primer esquila
PDF1	mic	Promedio diámetro de fibras primer esquila
CVF1	%	CV del promedio diámetro de fibras primer esquila
LM1	mm	Largo de mecha primer esquila
RT1	N/ktex	Resistencia a la tracción primer esquila
PC2	kg	Peso corporal a la segunda esquila (adulto)
IND1		Índice de selección "Afinador"
IND2		Índice de selección "Lanero"
an		Año de nacimiento
con	%	Nivel de consanguinidad
exa	%	Exactitud promedio
NT		Número total de hijos con datos de PDF1
NC		Número de campos con hijos evaluados

Progreso genético observado

Figura 3: Progreso genético en peso corporal al destete (PCD), peso corporal a la 1º esquila (PC1) y peso corporal a la 2º esquila (PC2).

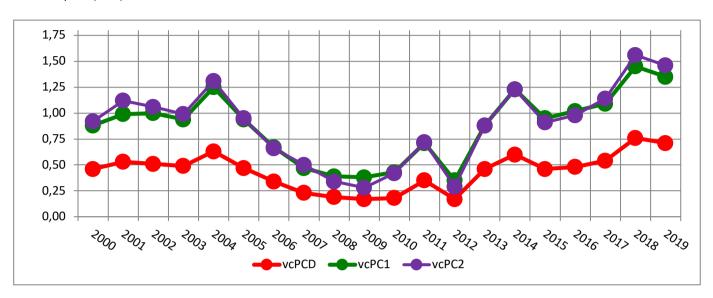


Figura 4: Progreso genético en peso de vellón limpio (PVL1) y promedio de diámetro de fibras (PDF1).

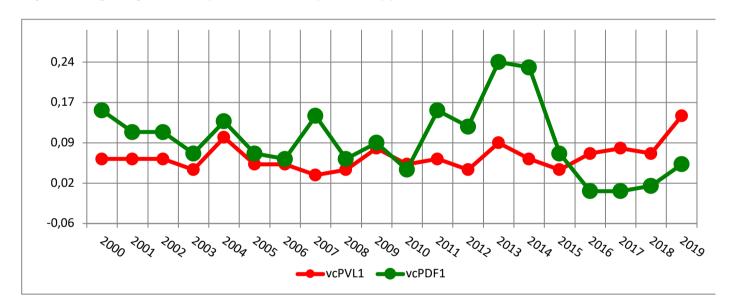
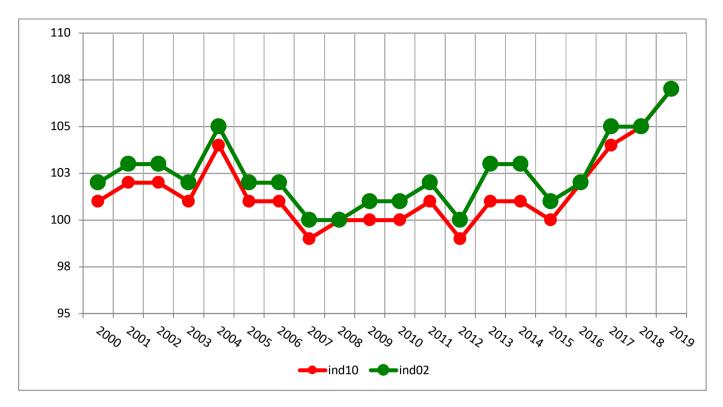



Figura 5: Progreso genético en el índice de selección "Afinador" (IND1) y en el índice de selección "Lanero" (IND2).

Padres líderes

En las siguientes Tablas se presentan los mejores 10 padres en diferentes características y el listado completo de padres evaluados a la fecha.

Tabla 4: Mejores 10 padres por orden de DEP peso corporal al destete.

			esvíos esp	erados de	la Progeni	е							
Nombre	PCD	PVL1	PDF1	PC2	CVF1	LM1	RT1	IND10	IND02	еха	nt	nc	con
COLLINSVILLE IMPERIAL 120050 X	1,70	0,04	0,76	3,80	0,10	1,38	0,74	114	127	67	25	1	0
TERRICK WEST 5.136 X	1,38	0,08	-0,41	2,85	-0,73	-5,41	0,97	127	122	74	39	1	0
WHITE RIVER 160546 X	1,28	0,08	0,22	2,75	-0,27	-1,14	0,86	115	119	68	38	1	0
COY AIKE 619 X	1,23	0,10	-0,13	2,32	-0,52	-0,77	1,09	122	121	75	20	1	0
POLL BOONOKE 15-0026 X	1,19	0,08	-0,37	2,58	-0,45	7,14	1,26	125	121	73	52	2	0
SPRINGVALE NORTH 555 X	1,13	0,13	0,48	2,41	-0,71	3,59	1,35	110	118	82	145	3	0
RIO PICO 226 X	1,10	0,06	-0,18	2,40	-1,07	2,12	1,97	120	118	69	22	1	0
COY AIKE 179 X	1,07	0,10	0,94	2,24	0,68	0,86	0,26	101	116	82	93	1	0
EAST STRATHGLEN WARRIOR 15-558 X	1,06	0,05	-0,14	2,39	-1,38	-1,07	2,57	119	118	79	66	2	0
INDALO 149 X TE	1,06	0,10	0,19	2,27	-0,52	3,74	1,71	114	118	68	18	1	0

Tabla 5: Mejores 10 padres por orden de DEP peso de vellón limpio.

		1	Desvíos esp	erados de	la Progeni	e							
Nombre	PCD	PVL1	PDF1	PC2	CVF1	LM1	RT1	IND10	IND02	exa	nt	nc	con
ONE OAK B302 X	0,63	0,39	0,33	1,46	0,66	9,61	-0,70	123	129	81	45	3	0
EASTVILLE PARK BOMBER 160611 X	0,90	0,26	0,30	1,97	-0,76	0,68	2,00	126	132	76	84	3	0
TOWALBA A 21525 X	-0,22	0,26	-0,62	-0,51	0,91	2,09	-2,54	129	120	77	78	1	0
COLLINSVILLE REGAL 130242 X	0,92	0,21	0,25	1,95	-0,18	3,66	0,78	118	123	74	61	1	0
NORTH ASHROSE METRIC 232 X	-0,07	0,16	0,24	-0,04	-0,83	2,14	1,50	107	111	70	13	3	0
PICO SALAMANCA 2193 X	0,30	0,15	0,30	0,49	0,28	-0,10	0,08	107	112	84	150	1	0
PICO SALAMANCA 1605 X	-0,03	0,15	-0,03	0,07	0,29	2,98	-0,32	114	114	77	28	2	0
COROMANDEL ET 7 X	-0,41	0,15	-0,39	-0,84	-0,05	0,73	0,15	109	103	68	13	1	0
OLINDA 160001 X	0,73	0,14	0,05	1,56	-0,85	-1,85	1,88	113	115	63	20	2	0
DON STELVIO 2362 X	0,71	0,14	0,21	1,55	-0,15	-1,00	0,28	115	119	72	82	1	0

Tabla 6: Mejores 10 padres por orden de DEP diámetro de fibras.

			Desvíos esp	erados de	la Progenie)							
Nombre	PCD	PVL1	PDF1	PC2	CVF1	LM1	RT1	IND10	IND02	exa	nt	nc	con
MEDIA LUNA 565 X	0,55	0,02	-0,66	0,81	0,01	1,75	-0,33	117	107	81	38	1	0
TOWALBA A 21525 X	-0,22	0,26	-0,62	-0,51	0,91	2,09	-2,54	129	120	77	78	1	0
CHUBUTENSE 1415 X	0,80	-0,03	-0,56	1,74	-0,26	-4,71	0,10	116	108	72	11	1	0
MAITEN 167 X	0,51	-0,09	-0,49	1,06	1,65	-1,35	-4,57	103	96	69	17	1	0
MAITEN 26 X TE	-0,64	-0,11	-0,49	-1,42	0,72	-2,61	-2,70	90	81	65	10	2	0
MEDIA LUNA 189 X	-0,67	-0,08	-0,43	-1,36	-0,20	-1,48	-0,05	91	84	66	17	1	0
MAITEN 138 X	-0,89	-0,14	-0,42	-2,13	0,42	0,32	-1,16	79	71	70	16	1	0
TERRICK WEST 5.136 X	1,38	0,08	-0,41	2,85	-0,73	-5,41	0,97	127	122	74	39	1	0
COROMANDEL ET 7 X	-0,41	0,15	-0,39	-0,84	-0,05	0,73	0,15	109	103	68	13	1	0
POLL BOONOKE 15-0026 X	1,19	0,08	-0,37	2,58	-0,45	7,14	1,26	125	121	73	52	2	0

Tabla 7: Mejores 10 padres por orden de índice de selección "Lanero".

	PCD PVL1 PDF1 PC2 0,90 0,26 0,30 1,97 0,63 0,39 0,33 1,46 1,70 0,04 0,76 3,80 0,88 0,13 0,13 1,94 0,92 0,21 0,25 1,95 1,38 0,08 -0,41 2,85 1,19 0,08 -0,37 2,58 1,23 0,10 -0,13 2,32 -0,22 0,26 -0,62 -0,51		erados de	la Progeni	ie								
Nombre	PCD	PVL1	PDF1	PC2	CVF1	LM1	RT1	IND10	IND02	еха	nt	nc	con
EASTVILLE PARK BOMBER 160611 X	0,90	0,26	0,30	1,97	-0,76	0,68	2,00	126	132	76	84	3	0
ONE OAK B302 X	0,63	0,39	0,33	1,46	0,66	9,61	-0,70	123	129	81	45	3	0
COLLINSVILLE IMPERIAL 120050 X	1,70	0,04	0,76	3,80	0,10	1,38	0,74	114	127	67	25	1	0
BELMONT PARK 13-0482 X	0,88	0,13	0,13	1,94	-0,31	3,53	1,07	120	123	75	46	5	0
COLLINSVILLE REGAL 130242 X	0,92	0,21	0,25	1,95	-0,18	3,66	0,78	118	123	74	61	1	0
TERRICK WEST 5.136 X	1,38	0,08	-0,41	2,85	-0,73	-5,41	0,97	127	122	74	39	1	0
POLL BOONOKE 15-0026 X	1,19	0,08	-0,37	2,58	-0,45	7,14	1,26	125	121	73	52	2	0
COY AIKE 619 X	1,23	0,10	-0,13	2,32	-0,52	-0,77	1,09	122	121	75	20	1	0
TOWALBA A 21525 X	-0,22	0,26	-0,62	-0,51	0,91	2,09	-2,54	129	120	77	78	1	0
DON STELVIO 2362 X	0,71	0,14	0,21	1,55	-0,15	-1,00	0,28	115	119	72	82	1	0

Tabla 8: Mejores 10 padres por orden índice de selección "Afinador".

		[Desvíos esp	erados de	la Progeni	е							
Nombre	PCD	PVL1	PDF1	PC2	CVF1	LM1	RT1	IND10	IND02	exa	nt	nc	con
TOWALBA A 21525 X	-0,22	0,26	-0,62	-0,51	0,91	2,09	-2,54	129	120	77	78	1	0
TERRICK WEST 5.136 X	1,38	0,08	-0,41	2,85	-0,73	-5,41	0,97	127	122	74	39	1	0
EASTVILLE PARK BOMBER 160611 X	0,90	0,26	0,30	1,97	-0,76	0,68	2,00	126	132	76	84	3	0
POLL BOONOKE 15-0026 X	1,19	0,08	-0,37	2,58	-0,45	7,14	1,26	125	121	73	52	2	0
ONE OAK B302 X	0,63	0,39	0,33	1,46	0,66	9,61	-0,70	123	129	81	45	3	0
COY AIKE 619 X	1,23	0,10	-0,13	2,32	-0,52	-0,77	1,09	122	121	75	20	1	0
BELMONT PARK 13-0482 X	0,88	0,13	0,13	1,94	-0,31	3,53	1,07	120	123	75	46	5	0
RIO PICO 226 X	1,10	0,06	-0,18	2,40	-1,07	2,12	1,97	120	118	69	22	1	0
EAST STRATHGLEN WARRIOR 15-558 X	1,06	0,05	-0,14	2,39	-1,38	-1,07	2,57	119	118	79	66	2	0
COLLINSVILLE REGAL 130242 X	0,92	0,21	0,25	1,95	-0,18	3,66	0,78	118	123	74	61	1	0

Tabla 9: Listado completo de padres Merino Mocho por orden alfabético

		D	esvíos esp	erados de	la Progen	ie							
Nombre	PCD	PVL1	PDF1	PC2	CVF1	LM1	RT1	IND10	IND02	еха	nt	nc	con
ARROYO VERDE 758 X	0,26	0,12	0,01	0,64	0,39	0,13	-0,79	111	111	63	10	1	0
ASHROSE PJ 108 PX	0,68	0,11	0,12	1,06	0,10	2,22	0,53	109	111	82	19	2	0
BARLOO EUREKA 27 X	0,50	0,07	-0,01	1,11	-0,31	0,30	0,72	113	114	77	158	2	0
BELMONT PARK 13-0482 X	0,88	0,13	0,13	1,94	-0,31	3,53	1,07	120	123	75	46	5	0
CABO BLANCO 99 X	0,56	0,07	0,16	1,16	0,17	2,89	0,03	111	114	73	42	1	0
CALLOWIE 7.227 X	-0,14	0,03	0,10	-0,27	-1,03	-0,61	1,46	102	104	65	25	1	0
CHIMANGO 121 X	-0,40	0,14	-0,14	-0,90	0,38	2,01	-0,84	105	103	72	15	1	0
CHIMANGO 131 X	-0,84	0,07	-0,30	-1,87	-0,15	-1,06	0,23	97	92	66	10	1	0
CHUBUTENSE 1253 X	-0,61	-0,02	0,33	-1,62	-0,14	0,30	2,64	74	79	81	95	1	0
CHUBUTENSE 1349 X TE	0,75	-0,05	0,22	1,37	-0,58	2,53	1,99	94	98	78	32	1	0
CHUBUTENSE 1415 X	0,80	-0,03	-0,56	1,74	-0,26	-4,71	0,10	116	108	72	11	1	0
CHUBUTENSE 2049 X	0,47	-0,09	0,26	0,76	-0,88	-2,55	2,42	91	95	80	42	1	0
COLLINSVILLE 090783 X	-0,17	0,06	-0,15	-0,49	0,15	2,36	-1,14	98	96	77	84	1	0
COLLINSVILLE 160479 X	0,44	0,04	0,59	1,01	-0,19	1,15	1,34	101	110	68	24	1	0

		D	esvíos esp	erados de	la Progen	ie							
Nombre	PCD	PVL1	PDF1	PC2	CVF1	LM1	RT1	IND10	IND02	еха	nt	nc	con
COLLINSVILLE APOLLO 111122 X	0,20	0,09	0,20	0,37	-0,16	0,12	1,20	102	105	73	39	3	0
COLLINSVILLE IMPERIAL 120050 X	1,70	0,04	0,76	3,80	0,10	1,38	0,74	114	127	67	25	1	0
COLLINSVILLE IMPERIAL 150682 X	-0,21	-0,01	-0,15	-0,49	0,38	3,08	-0,85	97	94	67	35	1	0
COLLINSVILLE REGAL 130242 X	0,92	0,21	0,25	1,95	-0,18	3,66	0,78	118	123	74	61	1	0
COROMANDEL ET 7 X	-0,41	0,15	-0,39	-0,84	-0,05	0,73	0,15	109	103	68	13	1	0
COROMANDEL OAB 444 PX	-0,19	-0,05	-0,19	-0,40	0,51	-2,63	-1,52	93	89	69	38	1	0
COY AIKE 127 X	-0,22	0,01	0,31	0,01	-0,46	1,62	1,40	89	94	82	50	1	0
COY AIKE 149 X	0,50	0,03	0,11	1,06	-0,66	3,15	1,68	104	105	77	34	1	0
COY AIKE 179 X	1,07	0,10	0,94	2,24	0,68	0,86	0,26	101	116	82	93	1	0
COY AIKE 199 X	0,90	-0,02	0,18	1,72	-0,32	-1,40	1,25	102	105	73	22	1	0
COY AIKE 219 X	-0,27	-0,03	-0,24	-0,44	0,28	-4,33	-0,59	95	91	82	78	1	12
COY AIKE 265 X	-0,05	-0,08	0,22	-0,34	0,20	3,56	0,17	84	87	72	13	1	0
COY AIKE 401 X	-0,36	-0,10	0,09	-0,66	-0,29	-0,43	0,90	82	83	73	10	1	1
COY AIKE 619 X	1,23	0,10	-0,13	2,32	-0,52	-0,77	1,09	122	121	75	20	1	0
COY AIKE 97 X	-0,09	0,01	0,00	-0,56	-0,30	2,07	0,84	95	95	79	39	1	0
COY AIKE MPR 8316 X	0,85	-0,03	0,34	1,83	0,10	0,50	0,47	99	104	74	34	1	0
DON STELVIO 2362 X	0,71	0,14	0,21	1,55	-0,15	-1,00	0,28	115	119	72	82	1	0
EAST MUNDALLA K 146 X	0,65	0,09	0,37	0,92	-0,15	0,43	0,95	104	110	87	159	4	0
EAST STRATHGLEN SIR DICK 8-52 X	0,28	0,07	-0,02	0,90	-0,35	2,24	0,69	110	110	79	22	3	0
EAST STRATHGLEN WARRIOR 15-558 X	1,06	0,05	-0,14	2,39	-1,38	-1,07	2,57	119	118	79	66	2	0
EASTVILLE PARK BOMBER 160611 X	0,90	0,26	0,30	1,97	-0,76	0,68	2,00	126	132	76	84	3	0
GREENFIELDS PA 269 PX	-0,10	0,05	0,37	-0,24	0,66	0,97	-0,53	90	96	77	18	1	0
GREENFIELDS PC 428 X	-0,53	0,08	0,22	-1,25	-0,44	-1,12	1,31	91	94	78	35	1	0
GREENFIELDS VP 782 X	-0,24	0,01	-0,27	-0,56	-0,01	5,49	-0,29	102	98	66	24	2	0
INDALO 131 X TE	0,69	0,09	0,24	1,42	0,16	0,68	0,41	105	109	65	12	1	0
INDALO 149 X TE	1,06	0,10	0,19	2,27	-0,52	3,74	1,71	114	118	68	18	1	0
LAS VEGAS 15 X	0,18	0,00	-0,08	0,48	0,26	1,36	-0,41	102	101	62	13	1	0
MAITEN 110 X TE	-0,61	-0,13	-0,06	-1,31	-0,19	-1,71	-0,37	86	84	71	32	1	0
MAITEN 138 X	-0,89	-0,14	-0,42	-2,13	0,42	0,32	-1,16	79	71	70	16	1	0
MAITEN 167 X	0,51	-0,09	-0,49	1,06	1,65	-1,35	-4,57	103	96	69	17	1	0

		D	esvíos esp	erados de	la Progeni	ie							
Nombre	PCD	PVL1	PDF1	PC2	CVF1	LM1	RT1	IND10	IND02	exa	nt	nc	con
MAITEN 26 X TE	-0,64	-0,11	-0,49	-1,42	0,72	-2,61	-2,70	90	81	65	10	2	0
MEDIA LUNA 189 X	-0,67	-0,08	-0,43	-1,36	-0,20	-1,48	-0,05	91	84	66	17	1	0
MEDIA LUNA 297 X	-0,13	0,03	-0,11	-0,52	0,00	-0,04	0,13	88	86	74	45	1	0
MEDIA LUNA 565 X	0,55	0,02	-0,66	0,81	0,01	1,75	-0,33	117	107	81	38	1	0
MOORUNDIE PARK M 102 X	-0,05	-0,03	0,01	-0,12	0,14	-0,71	-0,10	97	97	68	30	1	0
MULLOORIE ET 1556 X	0,75	-0,02	-0,06	1,53	-1,10	-2,39	2,16	101	100	81	116	2	0
NORTH ASHROSE 120-28	0,03	-0,03	-0,12	0,02	-0,40	-0,75	0,75	97	95	62	29	1	0
NORTH ASHROSE 251 X	-0,39	-0,03	0,09	-0,88	-0,28	-1,92	0,79	91	92	84	91	2	0
NORTH ASHROSE CH 36009 X	-0,25	-0,03	0,21	-0,56	-0,05	-1,05	0,48	92	95	72	34	1	0
NORTH ASHROSE METRIC 232 X	-0,07	0,16	0,24	-0,04	-0,83	2,14	1,50	107	111	70	13	3	0
NORTH ASHROSE PGS 017 X	0,81	0,07	0,07	1,71	-0,91	-1,91	1,96	109	110	70	45	1	0
NYOWEE WG 46 X	-0,45	0,02	0,13	-1,04	0,70	0,79	-1,09	92	94	61	30	1	0
OLD ASHROSE 744 X	0,50	-0,16	0,11	1,03	-0,49	-4,35	0,88	88	89	70	15	1	0
OLD ASHROSE PF 788 X	-0,14	-0,10	-0,08	-0,36	-0,64	-2,09	1,15	89	87	72	18	1	0
OLINDA 160001 X	0,73	0,14	0,05	1,56	-0,85	-1,85	1,88	113	115	63	20	2	0
OLINDA MR J ET 11 X	0,72	-0,05	-0,09	1,58	-0,28	0,56	0,60	105	104	81	46	2	0
ONE OAK 7.69 X	0,50	-0,06	0,01	1,07	-0,32	3,08	0,82	97	97	69	14	1	0
ONE OAK B302 X	0,63	0,39	0,33	1,46	0,66	9,61	-0,70	123	129	81	45	3	0
PICO SALAMANCA 1605 X	-0,03	0,15	-0,03	0,07	0,29	2,98	-0,32	114	114	77	28	2	0
PICO SALAMANCA 1607 X	-0,07	-0,02	-0,33	-0,09	0,44	2,04	-1,03	104	99	66	24	1	0
PICO SALAMANCA 2125 X	0,39	0,04	0,08	1,01	0,59	2,36	-0,86	106	108	82	48	1	0
PICO SALAMANCA 2193 X	0,30	0,15	0,30	0,49	0,28	-0,10	0,08	107	112	84	150	1	0
PICO SALAMANCA 2333 X	-0,59	-0,07	0,30	-1,17	0,29	2,02	0,11	82	86	75	48	1	0
PICO SALAMANCA 2659 X TE	0,23	-0,03	-0,35	0,64	-0,24	-2,05	0,21	106	101	83	195	2	0
POLL BOONOKE 15-0026 X	1,19	0,08	-0,37	2,58	-0,45	7,14	1,26	125	121	73	52	2	0
RIO PICO 226 X	1,10	0,06	-0,18	2,40	-1,07	2,12	1,97	120	118	69	22	1	0
RIO PICO 318 X	-0,80	-0,08	0,03	-1,90	-0,95	-1,25	1,95	74	74	77	56	1	0
ROSEVILLE PARK 14-0019 X	-0,06	0,06	-0,04	-0,25	0,28	0,91	-0,46	98	97	68	20	2	0
ROXANNA 0254 PX	0,35	-0,04	-0,07	0,80	-0,15	1,02	-0,15	106	105	70	42	1	0
SPRINGVALE NORTH 555 X	1,13	0,13	0,48	2,41	-0,71	3,59	1,35	110	118	82	145	3	0

Provino Avanzado Merino Mocho – Catálogo Padres

	PCD PVL1 PDF1 1,38 0,08 -0,41 -0,22 0,26 -0,62 -0,09 -0,18 0,40 1,28 0,08 0,22 0,58 0,12 -0,33 -0,20 0,03 0,18 -0,31 0,05 -0,37 0,37 -0,03 0,33 0,25 0,02 -0.05			erados de	la Progen	ie							
Nombre	PCD	PVL1	PDF1	PC2	CVF1	LM1	RT1	IND10	IND02	exa	nt	nc	con
TERRICK WEST 5.136 X	1,38	0,08	-0,41	2,85	-0,73	-5,41	0,97	127	122	74	39	1	0
TOWALBA A 21525 X	-0,22	0,26	-0,62	-0,51	0,91	2,09	-2,54	129	120	77	78	1	0
WESTERDALE 200 X	-0,09	-0,18	0,40	0,02	-1,65	-2,73	3,86	75	81	73	34	1	0
WHITE RIVER 160546 X	1,28	0,08	0,22	2,75	-0,27	-1,14	0,86	115	119	68	38	1	0
WILLANDRA GP 10-0033 X	0,58	0,12	-0,33	1,20	0,43	-0,21	-2,59	118	114	79	86	2	0
WILLEMENUP 130298 X	-0,20	0,03	0,18	-0,47	-0,27	0,93	0,85	95	97	71	22	2	0
WILLEMENUP SIR WINSTON WO 254 PX	-0,31	0,05	-0,37	-0,50	-0,25	0,95	0,34	111	105	81	24	4	0
WIRINGA PARK 09-55 X	0,37	-0,03	0,33	0,46	-0,31	-0,48	2,04	90	94	85	122	2	0
WOOD PARK 1159 X	0,25	0,02	-0,05	0,54	0,07	-2,56	-0,09	106	105	76	28	1	0

Percentiles

En una evaluación genética poblacional como lo es ProOvino Avanzado se obtiene el mérito genético de los animales participantes en forma de dep's. Los dep's se encuentran dentro de un rango de valores, propio de la característica evaluada. Este rango es útil, como una primera aproximación, para precisar la posición de un determinado animal (en términos de porcentaje) respecto al resto de animales de la población. En la tabla, se presentan los porcentajes de animales (carneros, ovejas, borregas y borregos) por encima o por debajo de determinados valores de dep, también conocidos como **Percentiles**, para todas las características evaluadas.

A modo de ejemplo, cuando un usuario de ProOvino Avanzado busca un carnero más lanero, elegirá uno con dep positivo para Peso de Vellón. Con la ayuda de la tabla puede ser más preciso. Ahora, no sólo podrá seleccionar un carnero con dep positivo, sino que se ubique por ejemplo, dentro del 5% más positivo de la población. Por el contrario, si desea seleccionar carneros que afinen, se deberá tener mayor precaución ya que los animales mejor valorados serán los más negativos, ubicados al otro extremo de la tabla. De este modo, para cada característica, se pueden buscar animales extremos o moderados en su valoración genética.

Percentil	depPCD	depPC1	depPC2	depPVL1	depPDF1	depCVF1	depRT1	depLM1	ind10	ind02
0%	2,37	4,54	5,19	0,40	-0,72	1,82	3,87	6,78	146	149
1%	1,67	2,96	3,52	0,38	-0,63	1,29	3,32	5,60	133	139
5%	1,33	2,49	2,81	0,25	-0,46	0,81	2,98	4,08	128	130
10%	1,10	2,05	2,38	0,19	-0,33	0,50	2,57	3,25	124	125
20%	0,86	1,62	1,83	0,15	-0,20	0,19	2,03	2,46	118	119
30%	0,72	1,38	1,55	0,12	-0,09	-0,06	1,58	1,81	115	115
40%	0,56	1,08	1,22	0,10	-0,04	-0,19	1,25	1,20	111	112
50%	0,41	0,80	0,84	0,07	0,03	-0,34	0,94	0,47	108	108
60%	0,23	0,45	0,49	0,05	0,09	-0,50	0,69	-0,08	104	105
70%	0,00	0,00	-0,08	0,01	0,17	-0,63	0,20	-0,57	101	102
80%	-0,21	-0,41	-0,48	-0,02	0,25	-0,85	-0,23	-1,31	96	95
90%	-0,48	-0,89	-1,08	-0,05	0,35	-1,11	-1,11	-2,08	87	87
95%	-0,62	-1,13	-1,41	-0,10	0,46	-1,34	-1,85	-2,89	81	81
99%	-1,05	-2,01	-2,41	-0,19	0,78	-1,60	-2,87	-5,62	75	72
100%	-1,35	-2,42	-3,08	-0,28	0,99	-1,84	-4,40	-7,83	58	64